Publications

5

7

8

Tumor segmentation in brain MRI images is a noted process that can make the tumor easier to diagnose and lead to effective radiotherapy planning. Providing and building intelligent medical systems can be considered as an aid for physicians. In many cases, the presented methods’ reliability is at a high level, and such systems are used directly. In recent decades, several methods of segmentation of various images, such as MRI, CT, and PET, have been proposed for brain tumors. Advanced brain tumor segmentation has been a challenging issue in the scientific community. The reason for this is the existence of various tumor dimensions with disproportionate boundaries in medical imaging. This research provides an optimized MRI segmentation method to diagnose tumors. It first offers a preprocessing approach to reduce noise with a new method called Quantum Matched-Filter Technique (QMFT). Then, the deep spiking neural network (DSNN) is implemented for segmentation using the conditional random field structure. However, a new algorithm called the Quantum Artificial Immune System (QAIS) is used in its SoftMax layer due to its slowness and nonsegmentation and the identification of suitable features for selection and extraction. The proposed approach, called QAIS-DSNN, has a high ability to segment and distinguish brain tumors from MRI images. The simulation results using the BraTS2018 dataset show that the accuracy of the proposed approach is 98.21%, average error-squared rate is 0.006, signal-to-noise ratio is 97.79 dB, and lesion structure criteria including the tumor nucleus are 80.15%. The improved tumor is 74.50%, and …

13

In this paper, we present a novel classifier based on fuzzy logic and wavelet transformation in the form of a neural network. This classifier includes a layer to predict the numerical feature corresponded to labels or classes. The presented classifier is implemented in brain tumor diagnosis. For feature extraction, a fractal model with four Gaussian functions is used. The classification is performed on 2000 MRI images. Regarding the results, the accuracy of the DT, KNN, LDA, NB, MLP, and SVM is 93.5%, 87.6%, 61.5%, 57.5%, 68.5%, and 43.6%, respectively. Based on the results, the presented FWNNet illustrates the highest accuracy of 100% with the fractal feature extraction method and brain tumor diagnosis based on MRI images. Based on the results, the best classifier for diagnosis of the brain tumor is FWNNet architecture. However, the second and third high-performance classifiers are the DT and KNN, respectively. Moreover, the presented FWNNet method is implemented for the segmentation of brain tumors. In this paper, we present a novel supervised segmentation method based on the FWNNet layer. In the training process, input images with a sweeping filter should be reshaped to vectors that correspond to reshaped ground truth images. In the training process, we performed a PSO algorithm to optimize the gradient descent algorithm. For this purpose, 80 MRI images are used to segment the brain tumor. Based on the results of the ROC curve, it can be estimated that the presented layer can segment the brain tumor with a high true-positive rate.

16

20

Statins can help COVID-19 patients’ treatment because of their involvement in angiotensin-converting enzyme-2. The main objective of this study is to evaluate the impact of statins on COVID-19 severity for people who have been taking statins before COVID-19 infection. The examined research patients include people that had taken three types of statins consisting of Atorvastatin, Simvastatin, and Rosuvastatin. The case study includes 561 patients admitted to the Razi Hospital in Ghaemshahr, Iran, during February and March 2020. The illness severity was encoded based on the respiratory rate, oxygen saturation, systolic pressure, and diastolic pressure in five categories: mild, medium, severe, critical, and death. Since 69.23% of participants were in mild severity condition, the results showed the positive effect of Simvastatin on COVID-19 severity for people that take Simvastatin before being infected by the COVID-19 virus. Also, systolic pressure for this case study is 137.31, which is higher than that of the total patients. Another result of this study is that Simvastatin takers have an average of 95.77 mmHg O2Sat; however, the O2Sat is 92.42, which is medium severity for evaluating the entire case study. In the rest of this paper, we used machine learning approaches to diagnose COVID-19 patients’ severity based on clinical features. Results indicated that the decision tree method could predict patients’ illness severity with 87.9% accuracy. Other methods, including the -nearest neighbors (KNN) algorithm, support vector machine (SVM), Naïve Bayes classifier, and discriminant analysis, showed accuracy levels of 80%, 68.8%, 61.1%, and 85.1 …

21

24

25

In comparison to the competitors, engineers must provide quick, low-cost, and dependable solutions. The advancement of intelligence generated by machines and its application in almost every field has created a need to reduce the human role in image processing while also making time and labor profit. Lepidopterology is the discipline of entomology dedicated to the scientific analysis of caterpillars and the three butterfly superfamilies. Students studying lepidopterology must generally capture butterflies with nets and dissect them to discover the insect’s family types and shape. This research work aims to assist science students in correctly recognizing butterflies without harming the insects during their analysis. This paper discusses transfer-learning-based neural network models to identify butterfly species. The datasets are collected from the Kaggle website, which contains 10,035 images of 75 different species of butterflies. From the available dataset, 15 unusual species were selected, including various butterfly orientations, photography angles, butterfly lengths, occlusion, and backdrop complexity. When we analyzed the dataset, we found an imbalanced class distribution among the 15 identified classes, leading to overfitting. The proposed system performs data augmentation to prevent data scarcity and reduce overfitting. The augmented dataset is also used to improve the accuracy of the data models. This research work utilizes transfer learning based on various convolutional neural network architectures such as VGG16, VGG19, MobileNet, Xception, ResNet50, and InceptionV3 to classify the butterfly species into various categories. All the …

32

35

In this study, the main objective is to develop an algorithm capable of identifying and delineating tumor regions in breast ultrasound (BUS) and mammographic images. The technique employs two advanced deep learning architectures, namely U-Net and pretrained SAM, for tumor segmentation. The U-Net model is specifically designed for medical image segmentation and leverages its deep convolutional neural network framework to extract meaningful features from input images. On the other hand, the pretrained SAM architecture incorporates a mechanism to capture spatial dependencies and generate segmentation results. Evaluation is conducted on a diverse dataset containing annotated tumor regions in BUS and mammographic images, covering both benign and malignant tumors. This dataset enables a comprehensive assessment of the algorithm’s performance across different tumor types. Results demonstrate that the U-Net model outperforms the pretrained SAM architecture in accurately identifying and segmenting tumor regions in both BUS and mammographic images. The U-Net exhibits superior performance in challenging cases involving irregular shapes, indistinct boundaries, and high tumor heterogeneity. In contrast, the pretrained SAM architecture exhibits limitations in accurately identifying tumor areas, particularly for malignant tumors and objects with weak boundaries or complex shapes. These findings highlight the importance of selecting appropriate deep learning architectures tailored for medical image segmentation. The U-Net model showcases its potential as a robust and accurate tool for tumor detection, while the …

36

This study explores the use of a digital twin model and deep learning method to build a global terrain and altitude map based on USGS information. The goal is to artistically represent various landforms while incorporating precise elevation modifications in the terrain map and encoding land height in the altitude map. A random selection of 5000 segments from the worldwide map guarantees the inclusion of significant characteristics in the subsets, with rescaling according to latitude accounting for distortions caused by map projection. The process of generating segmentation maps involves using unsupervised clustering and classification methods, segmenting the terrain into seven groups: Water, Grassland, Forest, Hills, Desert, Mountain, and Tundra. Each group is assigned a unique color, and median filtering is used to improve map characteristics. Random parameters are added to provide diversity and avoid duplication in overlapping image sets. The U-Net network is deployed for the segmentation task, with training conducted on the seven terrain classes. Cross-validation is carried out every 10 epochs to gauge the model’s performance. The segmentation maps produced accurately categorize the terrain, as evidenced by the ROC curve and AUC values. The main goal of this research is to create a digital twin model of Florida’s coastal area. This is achieved through the application of deep learning methods and satellite imagery from Google Earth, resulting in a detailed depiction of the coast of Florida. The digital twin acts as both a physical and a simulation model of the area, emphasizing its capability to capture and replicate real-world …

37